
On the Impact of EEG Re-referencing on
Classifier Performance

Joseph Rudoler

August 2018

1 Introduction

The overall goal of my summer project is to determine the optimal voltage
reference scheme for electroencephalographic data. For the purposes of the
project, the “optimal” scheme is the method of referencing voltage signals
that maximizes classifier performance. Classifier performance is quantified
by the AUC metric. In this report I will discuss only intracranial data,
and include my analysis of four reference schemes: bipolar reference, average
reference, region-of-interest reference, and weighted average reference. I will
review the data processing steps that I took to assess these reference schemes
and summarize and compare the classifier results for each scheme.

2 Methods

2.1 Subject Selection

My analysis dealt with the following 42 participants:

’R1060M’, ’R1061T’, ’R1065J’, ’R1066P’, ’R1067P’, ’R1068J’, ’R1077T’,
’R1083J’, ’R1094T’, ’R1111M’, ’R1112M’, ’R1113T’, ’R1121M’, ’R1122E’,
’R1123C’, ’R1125T’, ’R1134T’, ’R1135E’, ’R1137E’, ’R1146E’, ’R1147P’,
’R1151E’, ’R1153T’, ’R1154D’, ’R1156D’, ’R1158T’, ’R1161E’, ’R1166D’,
’R1168T’, ’R1172E’, ’R1189M’, ’R1191J’, ’R1193T’, ’R1195E’, ’R1200T’,
’R1215M’, ’R1217T’, ’R1222M’, ’R1223E’, ’R1230J’, ’R1236J’, ’R1243T’

These participants are a subset of the intracranial patients included in the
RAM project who participated in the FR1 experiment. In order to have the
flexibility to re-reference voltage in multiple ways, it is essential to use only
participants for whom monopolar EEG data can be obtained. Since this is
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generally not the case for participants under the ENS recording system, I ex-
cluded all ENS participants (participants with a subject ID number greater
than 275). I assessed classifier performance using a leave-one-session-out
cross-validation approach; this made it necessary to restrict my analysis to
participants who completed at least two sessions. 96 participants fit these
criteria. I encountered a variety of technical issues with 16 of these partic-
ipants, some related to cluster permission errors and others due to flawed,
inconsistent, or nonexistent events or voltage data. The need for proper lobe-
level brain region labeling caused me to drop another 9 subjects for whom
this data was either non-existent or inconsistent. To reduce computation
time I further restricted my analysis to subjects who had completed at least
three sessions.

2.2 Measuring Voltage

Voltage is a difference in electric potential between two points: for any mea-
surement of electric potential at some point a in space, it is necessary to
subtract the potential at a “reference” point b from that value.

∆V = Va − Vb

In physical terms, voltage represents the energy or work required to move
a point charge between two points. Moving a point charge requires work
because it is necessary to exert force in order to move through a gradient
in the electric field. As such, the voltage between two points is a reflection
of how much the electric field changes over the distance separating those
points. This means that selecting a nearby reference will yield information
about local changes in the electric field (signal components with a high spatial
frequency), while selecting a distant reference will yield information about
global changes in the electric field (signal components with a low spatial fre-
quency). Re-referencing is thus a spatial filter which can optimize the quality
and resolution of the EEG data for the purposes of classification.
In electrophysiological measurements, voltage is often initially recorded sep-
arately at each implanted electrode channel, and referenced to a common
reference. The common reference might be one of the many electrode chan-
nels implanted in the brain or some point chosen on or outside of the scalp.
This data is monopolar because it contains a single voltage reading for each
individual electrode. Before detailing the rest of the data processing pipeline,
I will explain how each scheme re-references monopolar data.
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2.2.1 Average Referencing

The signals are re-referenced to the average of all electrodes channels. This
is done by subtracting the mean voltage across channels from the individual
voltage at each channel. This effectively cancels out the original common
reference.

(∆V1..n)avg =

∑n
k=1 Vk − Vcommon

n
= Vavg − Vcommon

∆V ′k = (Vk − Vcommon) − (Vavg − Vcommon)

∆V ′k = Vk − Vavg

2.2.2 Bipolar Referencing

The electrodes channels are grouped in pairs (thus the name bipolar) and
referenced to one another. There are many possible combinations of channels,
though in a bipolar scheme channels are paired with one of their closest
neighbors. A single electrode channel can be a member of more than one
bipolar pair. The distribution of electrode pairs is often called a montage.
As was the case with average referencing, re-referencing the data removes
the original common reference.

∆Va = Va − Vcommon

∆Vb = Vb − Vcommon

∆Vab = ∆Va − ∆Vb = Va − Vb

2.2.3 Region-of-interest (ROI) Referencing

The electrodes are grouped according to the region of the brain in which
they are implanted, and re-referenced to the average of all electrodes in that
region. For this referencing scheme I grouped electrodes within the frontal
lobe, parietal lobe, temporal lobe, limbic lobe, and occipital lobe in each
hemisphere of the brain. Electrodes that did not fall strictly within the
bounds of these regions were grouped with the closest neighboring electrode
that had a clearly defined region.
If a region was populated by less than three electrodes channels, those chan-
nels were grouped along with the nearest well-populated region in order to
ensure that their data was actually informative of the electrical activity in
that region. Under this referencing scheme, a lone electrode channel is use-
less because the average of channels in its region is equal to the signal of
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that single channel; thus, the re-referencing process completely eliminates
that signal and yields zero voltage at every data point. This data would
completely lack informative features and would not be useful for spectral
analysis or classification. While averaging over a region with two electrode
channels is possible, the re-referenced data would still not be particularly
useful. Since electrodes are grouped linearly or in a grid, it is likely that
one or two electrodes channels that are alone in a region are actually close
together and at the edge of that region, with most of the channels that share
their strip, grid, or depth electrode residing nearby in the closest neighbor-
ing region. Therefore, it is better to group these lone electrodes with their
nearest neighbors rather than creating faulty data for a region that is not
well-populated.

2.2.4 Weighted Average (Spatial Laplacian)

This method is a measure of the second spatial derivative, also called the
spatial Laplacian. It accounts for not simply the gradient or change in the
electric field, but also the distribution of that change in space (i.e. the
spatial derivative/rate of change of the gradient). The idea is that from
each individual channel you subtract a weighted average of the activity at all
other channels. The weighting is based on the Euclidean distance between
channels. Consequently, activity at nearby electrodes has a greater effect
on the re-referenced signal than activity at distant electrodes. So, for each
electrode i among n total electrodes:

dij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

wij = e−(
dij
σ

)2

Wij =
wij∑n−1
j=1 wij

∆V ′i = ∆Vi −
n−1∑
j=1

Vj ·Wij

The parameter σ represents the standard deviation of the normal distribution
represented by the Gaussian function e−x

2
, or the width of the well-known

”bell-shaped curve”. Adjusting this parameter changes the degree to which
this scheme is localized. When the σ value is small, the weighting func-
tion only assigns significant weights to electrodes to the nearest neighbors
of the electrode in question and is therefore similar to the bipolar reference
scheme. When the σ value is very large, the weighting function assigns vir-
tually equal weights to all electrodes and is therefore similar to an average
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reference scheme. For three subjects (’R1060M’, ’R1061T’, ’R1112M’), I cal-
culated AUC (methods described in the section below) for 30 logarithmically
spaced values of σ between 1 and 1000. Since AUC values plateaued above
values of 100, I was able to determine that the scale of interest for σ is be-
tween 10 and 100. I then calculated AUC for 10 linearly spaced values of σ
between 10 and 100 for 16 subjects (I excluded the rest of the subjects from
this optimization in order to avoid over-fitting the data). I averaged the
values of σ that maximized AUC for these subjects and obtained an optimal
parameter of σ = 50.625, which I used for my analysis across all 42 subjects.

2.3 Data Processing and Computing Power

In my analysis, I studied encoding events from the FR1 experiment. I looked
at an encoding period from 0.0 seconds to 1.366 seconds after onset of the
study word, with an additional 1.365 second buffer period at both ends.
These parameters, and all other parameters described in this section, are
standardized for all lab analyses on FR experiment participants. They are
stored as an object in ramutils.parameters.
All data processing methods described in this section are identical for both
referencing schemes. After loading the voltage values for each channel, I
used a Butterworth Filter to remove 60 Hz line noise. Next, I used a Morlet
wavelet transform (with a wavenumber of 5) to compute power at 8 differ-
ent frequencies: 6.0 Hz, 9.75368156 Hz, 15.85571732 Hz, 25.77526961 Hz,
41.90062864 Hz, 68.11423148 Hz, 110.72742057 Hz, and 180.0 Hz. After re-
moving the buffer period, I log-transformed the power values. I averaged
the power over the time dimension and then z-transformed the power values
across all encoding events within each session. These processes generated
normalized power values for every combination of channels and frequencies
for all encoding events.
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2.4 Classification

Using the normalized power values and the outcomes of all encoding events
(recalled vs. not recalled), I trained and tested a logistic regression classifier
with a leave-one-session-out cross-validation approach. The classifier used a
penalty parameter of C = 0.00072. In each session, I employed a weighting
scheme based on ramutils code to account for the proportions of recalled
and not recalled words within that session. Then, I generated ROC curves
and computed their AUC to assess the performance of the classifier for each
referencing scheme.
To determine if the difference in classifier performance was significant, I found
the difference in AUC between referencing schemes for each subject and con-
ducted a single-sample t-test comparing those values to zero. P-values smaller
than p = 0.05 were considered statistically significant.
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3 Figures
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Figure 1: ROC curves for all 42 participants under each referencing scheme,
along with the mean ROC across participants and error bars indicating the
standard error of the mean.
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Figure 2: Mean AUC across participants for each referencing scheme. Error
bars indicate standard error of the mean. The bipolar scheme yields the
greatest mean AUC value, but it is important to note the small scale of this
graph. The difference between schemes is marginal.
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Figure 3: Mean ∆AUC between various reference schemes. Error bars indi-
cate standard error of the mean. Double asterisks indicate statistical signif-
icance (p < 0.05), which was calculated by performing a one-sample t-test
comparing ∆AUC values to zero across subjects. While the bipolar refer-
ence is significantly different from all three other schemes, none of those three
schemes are significantly difference from one another.
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Figure 4: Plot showing the relationship between a discrepancy in the number
of features between bipolar and average reference scheme and the difference
in performance of those schemes. Since the bipolar scheme often has a dif-
ferent number of electrodes than an average reference scheme, the number
of features interpreted by the classifier could potentially be a serious con-
founding factor that might cause a difference in AUC between schemes. This
graph, however, shows that there is no relationship between the difference in
number of features and the difference in AUC.
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Figure 5: Difference in AUC between the bipolar and average reference
scheme among subjects for whom the average reference had more features
than the bipolar reference. Even among these subjects, a bipolar reference
scheme performs significantly better than an average reference scheme.
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Figure 6: Classifier performance at the 10 assessed values of σ for 16 subjects.
Asterisks indicates maximum AUC for a given subject. Blue line indicates
mean classifier performance across all 16 subjects, with standard error of the
mean indicated by the blue error bars. On average, AUC increases steadily
with σ for the first 30-50 millimeters.
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Figure 7: Electrode weights, before normalization, as a function of distance.
Each line represents a weighting function with a different parameter σ. The
circular markers represent some possible locations of electrodes. Importantly,
electrodes past the point of inflection have significantly diminished weights. If
the electrodes are all on the same side of the point of inflection, their weights
are not so different from one another. In order to isolate the activity of the
nearest neighboring electrode (thus approximating the bipolar reference), the
point of inflection (which equals σ) must lie in between the nearest electrode
and the distant electrodes that should be filtered out.
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4 Conclusion

The data support the conclusion that a bipolar reference scheme is more
optimal for the purposes of classification than an average reference, a ref-
erence based on regions of interest, or a weighted average reference. While
this result is statistically significant, the difference in classifier performance
is marginal (∆AUC < 0.02).
This result suggests that successful classification depends upon high spatial
frequency components of the EEG signal rather than low spatial frequency
components. In other words, the informative features which are predictive
of successful recall are local changes in the electric field rather than global
changes. It is surprising that there is no significant difference in the perfor-
mance of the average, ROI, and weighted average schemes. Though none are
as sensitive to local changes as the bipolar reference, the ROI and weighted
average schemes are still significantly more localized than the average refer-
ence.
It is possible that the informative features of the electrophysiological data
are localized within regions significantly smaller than lobes. Thus, a more
spatially proximate reference, as used in the bipolar scheme, is necessary to
optimize classifier performance.
It seems confusing at first that the optimal parameter σ = 50.625 (mm) is so
much larger than the small distances which typically separate the electrodes
in a bipolar pair. On average across subjects, classifier performance clearly
improves steadily over the first 30-50 millimeters. This counter-intuitive
trend is caused by inconsistency in electrode distances across subjects. If σ
is smaller than the smallest distance between any two channels (the distance
separating bipolar pairs), then the nearby informative channels will not be
assigned a large weight. This means it will not be sufficiently highlighted
by the spatial filter, and will approximate an average reference much more
closely than a bipolar reference. Figure 7 is helpful in visualizing this prob-
lem.
The weighted average scheme might also yield better performance if the pa-
rameter σ were optimized for each subject through a more thorough and
computationally intensive method such as a nested cross validation.
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